
Journal of Computational Physics 214 (2006) 41–54

www.elsevier.com/locate/jcp
Analytic relations for reconstructing piecewise linear
interfaces in triangular and tetrahedral grids

Xiaofeng Yang, Ashley J. James *

Department of Aerospace Engineering and Mechanics, University of Minnesota, 107 Akerman Hall, 110 Union Street SE,

Minneapolis, MN 55455, USA

Received 3 June 2005; received in revised form 30 August 2005; accepted 7 September 2005
Available online 18 October 2005
Abstract

In volume of fluid methods for interfacial flow simulations, one essential process is the so-called interface reconstruc-
tion, in which an approximate interface is reconstructed from a given discrete volume fraction field. In [J. Comput. Phys.
164 (2000) 228–237], Scardovelli and Zaleski presented analytical relations connecting linear interfaces and volume frac-
tions in rectangular grids. Here, we present analytical relations connecting linear interfaces and volume fractions in trian-
gular and tetrahedral grids. For computing the volume of fluid in an arbitrary polygonal or polyhedral fluid element, we
also cite some of the most efficient formulas for polygon area and polyhedron volume computations. Simple test cases
show that this analytic method of interface reconstruction is about 18 times faster than an iterative method in two dimen-
sions, and four to six times faster in three dimensions. The results can be in general applied to other fields as well.
� 2005 Elsevier Inc. All rights reserved.

Keywords: VOF; Interface; Interfacial flow; Unstructured grid
1. Introduction

Interfacial flows are very common in many natural and industrial processes, such as emulsification, polymer
blending, and so on. In the past two decades, many methods have been developed for numerical simulations of
such processes, of which one of the most widely used is the volume of fluid (VOF) method [1,3,4].

In the VOF method, a volume fraction function f is defined. The value of the volume fraction in each grid
cell is equal to the ratio of the volume of one of the fluids in this cell, called fluid 1, to the total volume of the
grid cell. Thus, f is unity in a cell if the cell lies completely in fluid 1, and is zero if the cell lies completely in the
other fluid, called fluid 2. For cells that include an interface, and thus contain both fluid 1 and fluid 2, f is
between zero and unity. These cells with 0 < f < 1 are sometimes called the interfacial cells. As an example,
Fig. 1 shows the fluid distribution and the corresponding volume fractions on a triangular grid, where the
interface between the two fluids has been approximated by linear segments.
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.09.002

* Corresponding author. Tel.: +1 612 625 6027; fax: +1 612 626 1558.
E-mail address: ajames@aem.umn.edu (A.J. James).

mailto:ajames@aem.umn.edu

Fig. 1. Fluid distribution and the corresponding volume fractions. The shaded area is occupied by fluid 1. The non-shaded area is
occupied by fluid 2. The interface is approximated by linear segments.

42 X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54
Inversely, given the volume fractions in every grid cell, one can reconstruct an interface approximately,
which is called ‘‘interface reconstruction’’. Interface reconstruction is essential for a VOF method because,
in order to maintain the interface sharp, or prevent excessive numerical diffusion when the interface is being
convected, the calculation of the fluid volume fluxes are strongly dependent on the reconstructed interface
[1,3,4]. In general, the interface can be approximated by any relatively simple function. For example, in the
VOF method of Hirt and Nichols [1], interfaces are effectively approximated using piecewise constant func-
tions which result in a ‘‘stair-stepped’’ interface reconstruction. This is similar to the simple line (piecewise
constant) interface calculation (SLIC) of Noh and Woodward [2]. A more modern and currently most
widely used method is the piecewise linear interface reconstruction (PLIC) method. The PLIC method is
relatively easier to deal with than higher order methods, and it typically produces interfaces of second-order
accuracy, if the methods used for volume fraction advection and to compute the interface normal are suf-
ficiently accurate. A PLIC algorithm is at least second order if it reconstructs linear interfaces exactly. A
detailed review of some SLIC and PLIC interface reconstruction methods can be found in Rider and Kothe
[3].

In a PLIC interface reconstruction method, the interface in a cell is usually approximated as a linear func-
tion of the form n Æ x = d, where n is the unit normal vector of the interface, which points away from fluid 1,
and into fluid 2, x is the location of a point on the interface and d is a constant. The unit normal vector n is
often calculated from the gradient of the volume fraction, i.e., n = $f/|$f|, although accurate calculation of $f
is not trivial because f is in nature discontinuous. A comparison of several normal calculation methods can be
found in [3]. The constant d is determined by enforcing volume conservation, and is usually calculated itera-
tively. For example, Brent�s method is used by Rider and Kothe [3]. During each iterative step, the volume
truncated by the linear interface with the most recent estimate of d is calculated and compared to the given
volume of fluid in the cell. A final d is declared when the discrepancy between these two volumes is within some
prescribed tolerance.

In this paper, we are interested in deriving analytic relations connecting linear interfaces (d) and volume
fractions, i.e., given the interface normal vector in a cell, how to find the unique linear segment which also
truncates the cell by the given volume fraction. Analytic formulations eliminate the need to iterate, and thus
reduce computation time. In addition, the volume of fluid is exactly conserved during interface reconstruction.
However, the implementation may not be as straightforward as an iterative method, because of the logic
needed to determine which case applies. In [5], Scardovelli and Zaleski presented analytical relations connect-
ing linear interfaces and volume fractions in rectangular grids. In the present paper, we present analytical rela-
tions connecting linear interfaces and volume fractions in triangular and tetrahedral grids. The derivations are
performed in the context of the VOF method. However, the results can be in general applied to other fields as
well. Simple test cases are presented and the CPU time is compared to an iterative method.

X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54 43
2. Analytic PLIC on 2D triangular grids

In 2D, a reconstructed piecewise linear interface is composed of line segments. We represent each line seg-
ment by its two end points, which is equivalent to the other forms of line representation, but the former may
be more convenient to use than the other forms. Thus, our goal is to find the coordinates of the two end points
of each segment.

Consider an arbitrary triangular grid cell of a given volume fraction f and a line segment with a given unit
normal vector n. Let us denote the vertices of the triangle by A 0, B 0, and C 0 in an arbitrary order. We can draw a
line l 0 with normal vector n through vertex A 0, as illustrated in Fig. 2. Note that in all figures the triangles have
been rotated so that the linear segment appears horizontal. The relationship between line l 0 and the triangle can
be divided into three categories: (i) the whole triangle is on one side of the line (see Fig. 2(a)), (ii) the triangle is
divided by the line into two parts, one on each side (see Fig. 2(b)), and (iii) the line coincides with one of the
edges of the triangle (see Fig. 2(c)). Mathematically, the applicable category can be determined by comparing

the signed distances of vertices B 0 and C 0 to the line, which are defined as pB0 ¼ A0B0��!
� n and pC0 ¼ A0C0��!

� n, where
the over-right arrows are used to denote a vector pointing from the first vertex to the second vertex. The dis-
tance of vertexA 0 to the line is, of course, zero, i.e., pA0 ¼ 0. If pB0 and pC0 are of the same sign, then B 0 andC 0 are
on the same side of the line, and category (i) applies. If they are of different signs, then category (ii) applies. If
one of them is zero, then category (iii) applies. We assume that the triangle does not degenerate to a straight
line, a requirement of grid generation, so pB0 and pC0 cannot be zero at the same time. One can also transform
category (ii) to category (i) simply by exchanging the indices of the three vertices. Category (iii) is in fact a spe-
cial case of category (i). Transforming different cases to one single case can reduce the number of the cases, and
simplify the programming. This is especially helpful in 3D. Here, we show how to perform the transformation,
and give the results for category (i).

Let us rename the vertices by A, B, and C such that after renaming the signed distances of the vertices A, B
and C to the line l, which is drawn through vertex A and has unit normal vector n (see Fig. 3), satisfy the fol-
lowing relation:
Fig. 2.
(b) pB0
0 ¼ pA 6 pB 6 pC. ð1Þ

Notice that the equalities do not hold simultaneously if we assume that the triangle does not degenerate to a
one dimensional line or point. The ‘‘renaming’’ function can be defined as
P : fA0;B0;C0g ! fA;B;Cg

by requiring that
pP�1ðAÞ 6 pP�1ðBÞ 6 pP�1ðCÞ;
where P�1 is the inverse of P. Thus, after performing the ‘‘renaming’’ process, the new indices A, B, and C

satisfy relation (1), and
a b c

Drawing a linear segment through a vertex of a triangle. Distances from vertices to the linear segment are denoted. (a) pB0pC0 > 0;
pC0 < 0; and (c) pB0pC0 ¼ 0.

Fig. 3. Indices of the triangle after the transformation.

44 X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54
pA ¼ 0;

pB ¼ pP�1ðBÞ � pP�1ðAÞ;

pC ¼ pP�1ðCÞ � pP�1ðAÞ.
With relation (1) satisfied, the intersection of a linear interface with a triangular grid cell can be categorized
into two regimes, as illustrated in Fig. 4, where EF is the linear interface segment. Because the normal vector
points away from fluid 1 and into fluid 2, the transformation P ensures that vertex A must be in fluid 1. Let us
draw BD with the unit normal vector n, and define the area ratio of the triangle ABD to ABC as f* = SABD/SABC.
It is easy to show that
f � ¼ SABD

SABC
¼ pB

pC
. ð2Þ
Thus, Fig. 4(a) and (b) correspond to f 6 f* and f > f*, respectively.
For f < f* (see Fig. 4(a)), since ABD and AEF are similar triangles, we have that
jAE�!j
jAB�!j

¼ jAF�!j
jAD�!j

¼
ffiffiffiffiffiffiffiffiffi
SAEF

SABD

r
¼

ffiffiffiffiffi
f
f �

s
and AD

�! ¼ pB
pC

AC
�! ¼ f �AC

�!
.

Thus, the coordinates of the two end points, E and F, of the interface segment in the triangle ABC are
xE ¼ xA þ
ffiffiffiffiffi
f
f �

s
AB
�!

and xF ¼ xA þ
ffiffiffiffiffiffiffi
ff �

p
AC
�!

.

a b

Fig. 4. Fluid configuration for category (i). (a) f < f* and (b) f > f*.

X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54 45
Similarly, for f > f* (see Fig. 4(b)), since triangle BCD is similar to ECF, we have that
a

Fig. 5.
index e
jCE�!j
jCB�!j

¼ jCF�!j
jCD�!j

¼
ffiffiffiffiffiffiffiffiffiffi
SCEF

SCBD

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f
1� f �

s
and CD

�! ¼ ð1� f �ÞAC�!.
Thus, the coordinates of the two end points are
xE ¼ xC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f
1� f �

s
CB
�!

and xF ¼ xC þ
ffi
ð1� f Þð1� f �Þ

p
CA
�!

.

These formulas are also valid for special cases when pB = 0, or pB = pC. For pB = 0, that is when l coincides
with edge AB, we have that f* = 0. Because 1 > f > 0 in a cell containing an interface, the formulas for f > f*
apply, and are valid. For pB = pC, that is when l is parallel to edge BC, but not coincide, we have that f* = 1.
Thus, the formulas for f < f* apply, and are valid.
3. Analytic PLIC on 3D tetrahedral grids

In 3D, a reconstructed linear interface in each tetrahedral grid cell is a polygonal segment of a plane, which
can be represented by the vertices of the polygon (see Fig. 6).

Consider an arbitrary tetrahedral cell of a given volume fraction f and a linear interface with a given unit
normal vector n. The vertices of the tetrahedron are denoted by A 0, B 0, C 0, and D 0 in an arbitrary order. Let us
draw a plane l 0 with normal n through vertex A 0 as shown in Fig. 5(a). The signed distances of the other
vertices B 0, C 0, and D 0 to plane l 0 can then be computed as pB0 ¼ A0B0��!

� n; pC0 ¼ A0C0��!
� n; and pD0 ¼ A0D0��!

� n.
The distance of the vertex A 0 to the plane, pA0 , is of course 0. To simplify the formulation, we want to rename
the vertices by A, B, C, and D such that after renaming the signed distances of the vertices A B, C, and D to the
plane l, which is drawn through vertex A and has normal n (see Fig. 5(b)), satisfy the following relation:
0 ¼ pA 6 pB 6 pC 6 pD. ð3Þ
Notice that the equalities do not hold simultaneously if we assume that the tetrahedron does not degenerate to
a planar geometry.
b

Exchanging the indices of a tetrahedron. Distances from vertices to the plane are denoted. (a) Before index exchange and (b) after
xchange.

46 X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54
If we define the ‘‘renaming’’ function as
a

P : fA0;B0;C0;D0g ! fA;B;C;Dg

by requiring that
pP�1ðAÞ 6 pP�1ðBÞ 6 pP�1ðCÞ 6 pP�1ðDÞ;
where P�1 is the inverse of P, then, after performing the ‘‘renaming’’ process, the new indices A, B, C, and D

satisfy relation (3), and
pA ¼ 0;

pB ¼ pP�1ðBÞ � pP�1ðAÞ;

pC ¼ pP�1ðCÞ � pP�1ðAÞ;

pD ¼ pP�1ðDÞ � pP�1ðAÞ.
As is in the 2D case, this transformation ensures that vertex A is in fluid 1.
With relation (3) satisfied, the intersection of a linear interface with a tetrahedral grid cell can be catego-

rized into three regimes. Let us draw a plane with the given normal vector n through vertex B, as shown in
Fig. 6. The intersections of the plane with AC and AD are F and E, respectively. Then, the volume ratio of
the tetrahedron ABEF to ABCD is
fB ¼ V ABEF

V ABCD
¼ SAEF

SACD
¼ jAF�!j

jAC�!j

 !2

jAL�!j
jAD�!j

¼ pB
pC

� �2 pC
pD

.

The second equality holds because ABEF and ABCD have the same height, i.e., the distance of vertex B to
AEF or ACD. The third equality holds because SAEF/SACD = (SAEF/SALC)(SALC/SACD), and AEF and ALC
are similar, and ALC and ACD have the same height, i.e., the distance from C to AD. Similarly, we draw
a plane with the given normal vector n through vertex C. The intersections of the plane with DA and DB

are L and K, respectively. Then, the volume ratio of the tetrahedron DCKL to ABCD is
fC ¼ V DCKL

V ABCD
¼ SDKL

SABD
¼ jDK�!j

jDB�!j

 !2
jDE�!j
jAD�!j

¼ pD � pC
pD � pB

� �2 pD � pB
pD

.

If f 6 fB, then the linear interface must cut the tetrahedron ABEF, as shown in Fig. 6(a). We call this regime I.
If f P 1 � fC, then the linear interface must cut the tetrahedron DCKL, as shown in Fig. 6(c). We call this
regime III. Otherwise, the linear interface must be between the two planes through B and C, as shown in
Fig. 6(b). We call this regime II.

As is in the 2D case, special cases can occur. For example, if pB = 0, then fB = 0 and points E and F collapse
to vertex A. The formulas we derive below are valid for these special cases. The only caution is that, to avoid
dividing by zero, in practical programming one need explicitly classify the case when pA = pB = pC = 0 into
regime III, and set fC = 1, and the case when pB = pC = pD into regime II and set fB = 1.
b c

Fig. 6. Intersection of a planar interface with a tetrahedral grid cell. (a) Regime I; (b) regime II; and (c) regime III.

X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54 47
For regime I (see Fig. 6(a)), the interface polygon is a triangle with vertices G, H, and I. We have that
jAG�!j
jAE�!j

¼ jAH�!j
jAF�!j

¼ j AI�!j
jAB�!j

¼ f
fB

� �1=3

.

Thus, the coordinates of the three vertices of the linear interface piece are:
xG ¼ xA þ
f
fB

� �1=3

AE
�!

;

xH ¼ xA þ
f
fB

� �1=3

AF
�!

;

xI ¼ xA þ
f
fB

� �1=3

AB
�!

.

ð4Þ
Notice that AE
�!

and AF
�!

are related to the edges of the original tetrahedra cell by
AE
�! ¼ pB

pD
AD
�!

and AF
�! ¼ pB

pC
AC
�!

.

Similarly, for regime III (see Fig. 6(c)), the interface polygon is another triangle with vertices G, H, and I. We
have that
jDG�!j
jDL�!j

¼ jDH��!j
jDC�!j

¼ jDI�!j
jDK�!j

¼ 1� f
fC

� �1=3

.

Thus, the coordinates of the three vertices of the linear interface piece are:
xG ¼ xD þ 1� f
fC

� �1=3

DL
�!

;

xH ¼ xD þ 1� f
fC

� �1=3

DC
�!

;

xI ¼ xD þ 1� f
fC

� �1=3

DK
�!

;

ð5Þ
where
DL
�! ¼ pD � pC

pD
DA
�!

and DK
�! ¼ pD � pC

pD � pB
DB
�!

.

For regime II (see Fig. 6(b)), the interface polygon is a quadrilateral with vertices G, H, I and J. We want to
enforce
V ABGHIJ

V ABCD
¼ f . ð6Þ
Let us connect B and G, B and H, C and G, and C and J, as shown in Fig. 7. Thus, the volumes of the two
complex polyhedron can be decomposed into the volumes of a tetrahedron and a rectangular pyramid, respec-
tively as the following:
V ABGHIJ ¼ V BAGH þ V BGHIJ ; ð7Þ
V DCGHIJ ¼ V CDGJ þ V CDGHIJ . ð8Þ
Notice that the interface GHIJ, plane BEF and CKL are parallel to each other. So, we have that
j BI�!j
jBC�!j

¼ jFH�!j
j FC�!j

¼ jEG�!j
jEL�!j

¼ jBJ�!j
jBK�!j

¼ a; ð9Þ

Fig. 7. Decomposition of complex geometries in regime II.

48 X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54
where a is equal to the ratio of the perpendicular distance between plane BEF and GHIJ to the perpendicular
distance between plane BEF and CKL. Thus, if we find a, we can determine the coordinates of the four vertices
of the linear interface from Eq. (9).

To determine a by enforcing Eq. (6), we must find expressions for the ratios of the volumes in Eq. (7) to
VABCD. First, notice that
V BAGH

V ABCD
¼ SAGH

SACD
¼ jAH�!j

jAC�!j

 !2

jAL�!j
jAD�!j

¼ jAH�!j
jAC�!j

 !2

pC
pD

.

We decompose jAH�!j as follows:
jAH�!j ¼ jAF�!j þ jFH�!j ¼ jAF�!j þ aj FC�!j ¼ jAF�!j þ a jAC�!j � jAF�!j
� �

;

which gives us
jAH�!j
jAC�!j

¼ jAF�!j
jAC�!j

þ a 1� jAF�!j
jAC�!j

 !
¼ pB

pC
þ a 1� pB

pC

� �
.

By substitution, we obtain
V BAGH

V ABCD
¼ pB

pC
þ a 1� pB

pC

� �� �2 pC
pD

. ð10Þ
Similarly, we have that
V CDGJ

V ABCD
¼ SDGJ

SABD
¼ jDJ�!j

jDB�!j

 !2
jDE�!j
jAD�!j

¼ jDJ�!j
jDB�!j

 !2

1� pAB
pAD

� �
;

jDJ�!j ¼ jDB�!j � jBJ�!j ¼ jDB�!j � ajBK�!j;

jDJ�!j
jDB�!j

¼ 1� a
jBK�!j
jDB�!j

¼ 1� a
pC � pB
pD � pB

.

Then, by substitution, we obtain
V CDGJ

V ABCD
¼ 1� a

pC � pB
pD � pB

� �2

1� pB
pD

� �
. ð11Þ

X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54 49
Now, notice that the two pyramids BGHIJ and CGHIJ have the same base. So their volume ratio is equal to
the ratio of the distance of vertex B to GHIJ to the distance of vertex C to GHIJ, i.e.,
V BGHIJ

V CGHIJ
¼ a

1� a
. ð12Þ
In addition, because the decomposed volumes constitute the original tetrahedron ABCD, we have that
V BAGH

V ABCD
þ V CDGJ

V ABCD
þ V BGHIJ

V ABCD
þ V CGHIJ

V ABCD
¼ 1. ð13Þ
Combining Eqs. (10)–(13), we get
V BGHIJ

V ABCD
¼ �a3

ðpC � pBÞ
2

pD

1

pC
þ 1

pD � pB

� �
þ a2

2ðpC � pBÞ
2

pDpC
þ a

pBðpC � pBÞ
pDpC

. ð14Þ
Finally, enforcing the known volume fraction, Eq. (6), in conjuction with Eqs. (7), (10) and (14) gives us an
equation for a
P ðaÞ ¼ aa3 þ ba2 þ caþ d ¼ 0; ð15Þ
where
a ¼ �ðpC � pBÞ
2

pD

1

pC
þ 1

pD � pB

� �
;

b ¼ 3ðpC � pBÞ
2

pDpC
;

c ¼ 3pBðpC � pBÞ
pDpC

;

d ¼ p2B
pDpC

� f
are known quantities. Notice that P(a) is the difference between the volume fraction corresponding to the
position of GHIJ given by a and the given volume fraction f, and thus P(a) should increase as a increases
from 0 to 1 or as GHIJ moves from BEF to CKL. On the other hand, because a < 0, P(«1) = ±1. There-
fore, Eq. (15) must have three real roots, and the root of interest must be the middle one, near which P(a)
increases.

Analytic solutions can be found for cubic equations [7]. In our case, the root of interest is
a ¼
ffiffiffiffiffiffiffi
� p
3

r ffiffiffi
3

p
sin h� cos h

� �
� b
3a

;

where
p ¼ c
a
� b2

3a2
; q ¼ d

a
þ 2b3

27a3
� bc
3a2

; and h ¼ 1

3
arccos

� q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðp=3Þ3

q
!
.

It is also possible to find the roots of a cubic equation numerically. Scardovelli and Zaleski [5] showed that
directly evaluating this analytic formula is less than two thirds as time consuming as Newton–Raphson
iterations.

Now that a is known, the coordinates of the four vertices of the linear interface can then be determined
from Eq. (9), i.e.

50 X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54
xG ¼ xE þ aEL
�!

;

xH ¼ xC þ ð1� aÞCF�!;

xI ¼ xB þ aBC
�!

;

xJ ¼ xB þ aBK
�!

;

ð16Þ
where
xE ¼ xA þ
pB
pD

AD
�!

;

EL
�! ¼ pC � pB

pD
AD
�!

;

CF
�! ¼ pC � pB

pC
CA
�!

;

BK
�! ¼ pC � pB

pD � pB
BD
�!

.

Notice that the above derivations can be inversely used to calculate the volume fraction of a cell when the cell
is cut by a given linear interface. For example, when a linear interface intersects a tetrahedron as regime II,
then one can easily compute a from the location of one of the verticies of the interfacial polygon, and the cubic
polynomial P(a), when evaluating d as p2B=pDpC, gives the volume fraction.

4. Computing the volume of fluid in an arbitrary polygonal or polyhedral fluid element

Another important problem in the VOF method is to compute the volume fluxes of fluid, which in general
boils down to computing the area or volume of an arbitrary polygon (in 2D) or polyhedron (in 3D). These
polygonal or polyhedral fluid elements are usually obtained by clipping a fluid element against a grid cell
(see [3] for example). In this section, we cite some formulas for computing the area/volume of an arbitrary
polygon/polyhedron.

Let (xi,yi), i = 0, . . .,n, be the coordinates of the vertices of a polygon with xn = x0 and yn = y0, then the
signed area of the polygon can be computed as the following [8]:
S ¼ 1

2

Xn�1

i¼0

ðxiyiþ1 � xiþ1yiÞ ¼
1

2

Xn
i¼1

xiðyiþ1 � yi�1Þ; ð17Þ
where in the second summation it is assumed that xn+1 = x1 and yn+1 = y1. This signed area is positive when
the vertices are ordered counterclockwise, and negative when ordered clockwise. The only restriction on this
formula is that the polygon must not be self-intersecting. For a polygon with n vertices, the first summation,
which is used in many textbooks, involves 2n multiplications and (2n � 1) additions, while the second summa-
tion due to Sunday [8] only involves n multiplications and (2n � 1) additions.

Now, consider a polyhedron with m faces, labeled F1, . . .,Fm, with their normal vectors pointing away from
the polyhedron. Let Pj be an arbitrary point on face Fj, which is usually chosen to be any vertex of face Fj.
Then, the volume of the polyhedron can be computed as [9]
V ¼ 1

6

Xm
j¼1

Pj � ð2SjÞ;
where Sj is the vector area of face Fj. Let Xi = (xi,yi,zi), i = 0, . . .,n, be the vertices of a planar polygonal face
in 3D space, listed in counterclockwise direction when viewed from the half space into which the normal vec-
tor points. Then, the vector area of the face can be computed as [9]
2Sj ¼
Xh�1

i¼1

ðX2i � X0Þ � ðX2iþ1 � X2i�1Þ þ ðX2h � X0Þ � ðXl � X2h�1Þ;
where h is the greatest integer less than (n � 1)/2, and l = 0 for n odd, and l = n � 1 for n even.

X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54 51
The above formulas offer a substantial improvement of the efficiency over Goldman�s standard formula
[10,9]. Further speed-up can be achieved upon specific implementations (see [9]). Concerning the vector area
calculation, one more efficient formula can be obtained by using the strategy due to Sunday [8], in which the
planar polygon in 3D is projected onto a 2D plane by simply ignoring one of the three coordinates, the area in
the 2D plane can be computed using the previous fastest formula, and the area of the 3D planar polygon can
be recovered by scaling the 2D area. This strategy achieves about three times speed-up over the above Gelder�s
formula [8].

5. Iterative method

In the next section, the direct method will be compared to the results of an interactive method. In this sec-
tion we briefly describe the iterative method used for this comparison. Instead of computing the line segment
end points or polygon verticies, the line constant, d, is computed to define an interface with the given unit
normal.

The method is based on Brent�s method, as implemented in [11]. First, for each cell vertex d is determined
for a line in 2D or a plane in 3D, with the given unit normal, that passes through that vertex. The minimum
and maximum of these values of d provide bounds on d for Brent�s method, which begins with these bounds
and iterates until the absolute difference between the given volume fraction, and the volume fraction corre-
sponding to the current value of d is less than some tolerance.

In two dimensions, the line defined by d and the given unit normal splits the grid cell into two polygons. A
clipping routine (see [3] for further description) is used to determine the verticies of the polygon that the nor-
mal points away from. The polygon area is then computed using Eq. (17), which is also used to compute the
cell area. The volume fraction corresponding to d is then the polygon area divided by the cell area.

In three dimensions, the volume fraction corresponding to d is computed using the inverse of the method of
Section 3. The verticies are reordered so that relation (3) is satisfied. The signs of pA0 ; pB0 ; pC0 ; and pD0 are in-
spected to determine whether regime I, II or III applies. One of the coordinates of one of the verticies of the
interfacial polygon is determined by finding the intersection between the interfacial plane defined by d and the
line connecting two of the cell verticies. This coordinate is used in Eq. (4) for regime I, Eq. (16) for regime II,
or Eq. (5) for regime III to determine the volume fraction.

6. Verification

Test cases are performed for the two regimes illustrated in Fig. 4 in two dimensions (referred to below as
cases 1 and 2) and for regimes I, II, and III in three dimensions. The results are compared to the iterative method
outlined in Section 5.

The 2D test cases are shown in Fig. 8. The line segment is the same in the two cases, but fluid 1 lies on
opposite sides of the line between the cases. The analytic method determines the locations of the segment
a b

Fig. 8. Two dimensional test cases. The cell verticies are A 0, B 0, and C 0, with coordinates (0,0), (1,0), and (0,1), respectively. The line
segment endpoints are D 0 and E 0, with coordinates (1/2,0) and (0,1/2), respectively. (a) Case 1: f < f*, the unit normal is ð1=

ffiffiffi
2

p
; 1=

ffiffiffi
2

p
Þ,

f = 1/4, and d ¼ 1=ð2
ffiffiffi
2

p
Þ. (b) Case 2: f > f*, the unit normal is ð�1=

ffiffiffi
2

p
;�1=

ffiffiffi
2

p
Þ, f = 3/4, and d ¼ �1=ð2

ffiffiffi
2

p
Þ.

52 X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54
end points, then the line constant is computed as d = n Æ x at each end point for comparison to the iterative
method, which determines d directly.

The percent error in d is presented in Table 1 for the two cases using the analytic and iterative methods.
In the analytic method, the end point locations and d are exact to machine precision. In the iterative method
the error decreases as the tolerance decreases. The results of the two cases are almost identical. Nine iter-
ations are required for the solution to fully converge. All test cases were run on a Dell Workstation with
dual 933 MHz Pentium III xeon processors to evaluate the CPU time. The CPU time required is reported
for 100,000 repetitions, and increases as the tolerance is decreased for the iterative method. The CPU time
required by the iterative method when it is fully converged is about 18 times that required by the analytic
method. In addition, we scaled down the geometry of cases 1 and 2 to evaluate the effect of round-off error,
and found that the results were exact for any scaling factor.

The 3D test cases are illustrated in Fig. 9. The same interfacial plane is used to test regimes I and III, as
shown in Fig. 9(a), but fluid 1 lies on opposite sides of the plane between the two cases. The configuration
used to test regime II is shown in Fig. 9(b). As in the 2D tests the line constant is computed as d = n Æ x at
every polygon vertex for comparison to the iterative method. The results are given in Table 2. The analytic
results are exact within machine accuracy. As in the 2D case, the results of regimes I and III are almost
identical. Nine or 10 iterations are required for full convergence, in which case the iterative method requires
about four times the CPU time of the analytic method. For regime II only eight iterations are needed, but
6.6 times the CPU time of the analytic method is required. In 3D the analytic method requires eight times as
much CPU time as in 2D, while the iterative method requires less than twice as much time in 3D as in 2D
for the same tolerance.

The analytic method is clearly faster in both 2D and 3D, but the complexity of the implementation is
comparable. Implementation of the analytic method is quite simple, except perhaps the logic of reordering
the verticies from A 0, B 0, C 0, and, in 3D, D 0 to A, B, C, and D. In 3D, the iterative method, we used also
requires reordering of the verticies, but has the benefit that only one coordinate of one polygon vertex need
be computed to determine the volume fraction, and hence d. Further speed-up of the iterative 3D method
may be attainable by implementing a clipping routine and computing the polygon volume using the formu-
las of Section 4, as we did in the 2D iterative method. In 2D, we found this to be slightly faster than using
the formulas of Section 2. In 2D, the clipping subroutine is somewhat complex, but in a dynamic simulation
it may be needed elsewhere, such as in computation of the flux.
Table 1
Results of the two-dimensional test cases using the direct and iterative methods

Method Tolerance % Error CPU time titerative/tanalytic Iterations

Case 1

Analytic – 0 0.047 1.0 –

Iterative 1.E � 2 0.59 0.59 12.7 6
Iterative 1.E � 4 6.51E � 3 0.67 14.3 7
Iterative 1.E � 6 2.68E � 5 0.75 16.0 8
Iterative 1.E � 8 8.71E � 10 0.86 18.3 9
Iterative 1.E � 10 8.71E � 10 0.84 18.0 9

Case 2

Analytic – 0 0.047 1.0 –

Iterative 1.E � 2 0.59 0.59 12.7 6
Iterative 1.E � 4 6.51E � 3 0.69 14.7 7
Iterative 1.E � 6 2.68E � 5 0.78 16.7 8
Iterative 1.E � 8 8.71E � 10 0.88 18.7 9
Iterative 1.E � 10 8.71E � 10 0.86 18.3 9

The % error in d, the CPU time required for 100,000 repetitions, the ratio of the time required by the iterative method to that required by
the analytic method, and the number of iterations are reported.

Table 2
Results of the three-dimensional test cases using the direct and iterative methods

Method Tolerance % Error CPU time titerative/tanalytic Iterations

Regime I

Analytic – 0 0.36 1.0 –

Iterative 1.E � 2 5.16E � 2 1.05 2.8 6
Iterative 1.E � 4 9.06E � 4 1.33 3.5 8
Iterative 1.E � 6 4.68E � 7 1.50 4.0 9
Iterative 1.E � 8 4.68E � 7 1.50 4.0 9
Iterative 1.E � 10 0 1.48 4.0 9

Regime II

Analytic – 1.18E � 14 0.22 1.0 –

Iterative 1.E � 2 0.48 0.95 4.4 5
Iterative 1.E � 4 6.73E � 6 1.13 5.1 6
Iterative 1.E � 6 6.73E � 6 1.28 5.9 7
Iterative 1.E � 8 5.61E � 10 1.44 6.6 8
Iterative 1.E � 10 5.61E � 10 1.44 6.6 8

Regime III

Analytic – 0 0.38 1.0 –

Iterative 1.E � 2 5.16E � 2 1.06 2.8 6
Iterative 1.E � 4 9.06E � 4 1.38 3.7 8
Iterative 1.E � 6 4.68E � 7 1.50 4.0 9
Iterative 1.E � 8 4.68E � 7 1.52 4.0 9
Iterative 1.E � 10 1.92E � 14 1.67 4.5 10

The % error in d, the CPU time required for 100,000 repetitions, the ratio of the time required by the iterative method to that required by
the analytic method, and the number of iterations are reported.

a b

Fig. 9. Three dimensional test cases. The cell verticies are A 0, B 0, C 0, and D 0 with coordinates (0,0,0), (1,0,0), (0,1,0), and (0,0,1),
respectively. (a) Regimes I and III, the polygon verticies are E 0, F 0, and G 0 with coordinates (1/2,0,0), (0,1/2,0), and (0,0,1/2), respectively.
For regime I, the unit normal is ð1=

ffiffiffi
3

p
; 1=

ffiffiffi
3

p
; 1=

ffiffiffi
3

p
Þ, f = 1/8, and d ¼ 1=ð2

ffiffiffi
3

p
Þ. For regime III, the unit normal is ð�1=

ffiffiffi
3

p
;�1=

ffiffiffi
3

p
;

�1=
ffiffiffi
3

p
Þ, f = 7/8, and d ¼ �1=ð2

ffiffiffi
3

p
Þ. (b) Regime II, the polygon verticies are E 0, F 0, G 0, and H 0 with coordinates (2/3,0,0), (0,2/3,0),

(2/3,0,1/3), and (0,2/3,1/3), respectively, the unit normal is ð1=
ffiffiffi
2

p
; 1=

ffiffiffi
2

p
; 0Þ, f = 20/27, and d ¼

ffiffiffi
2

p
=3.

X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54 53
7. Conclusions

We have derived analytic formulas to compute the positions of the endpoints of a linear interface approx-
imation in a 2D, triangular grid cell and the vertices of a planar interface approximation in a 3D, tetrahedral
grid cell, given the interface normal and the cell volume fraction. These formulas allow the interface recon-
struction step of the volume of fluid method to be performed analytically, rather than iteratively, reducing
the computational cost. Formulas to compute the volume of fluid in a given 2D or 3D region are also
presented.

54 X. Yang, A.J. James / Journal of Computational Physics 214 (2006) 41–54
Simple test cases show that this analytic method is about 18 times faster than an iterative method in 2D and
four to six times faster in 3D. The implementation of the analytic and iterative methods are of comparable
complexity. The 2D formulation has been implemented in a coupled level set/volume of fluid method with
a Stokes solver on an unstructured, adaptive mesh [6]. In future work, we will extend this work to 3D using
the formulas developed here. The use of adaptive meshes is necessary to simulate interfacial flow problems
with a wide range of length scales, such as drop coalescence and tip streaming.

Acknowledgments

The authors thank the reviewers for their useful suggestions.

References

[1] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Phys. Fluids 39 (1981) 201–225.
[2] W.F. Noh, P.R. Woodward, in: A.I. van de Vooren, P.J. Zandbergen (Eds.), SLIC (Simple Line Interface Method), Lecture Notes in

Physics, vol. 59, Springer, Berlin, 1976, p. 330.
[3] W.J. Rider, D.B. Kothe, Reconstructing volume tracking, J. Comput. Phys. 141 (1998) 112–152.
[4] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech. 31 (1999) 567–

603.
[5] R. Scardovelli, S. Zaleski, Analytical relations connecting linear interfaces and volume fractions in rectangular grids, J. Comput.

Phys. 164 (2000) 228–237.
[6] X. Yang, A.J. James, J. Lowengrub, X. Zheng, V. Cristini, An adaptive coupled level-set/volume-of-fluid interface capturing method

for unstructured triangular grids, J. Comput. Phys., in review.
[7] J.J. Tuma, Engineering Mathematics Handbook, second ed., McGraw-Hill, New York, 1979.
[8] D. Sunday, Fast polygon area and Newell normal computation, J. Graphics Tools: JGT 7 (2) (2002) 9–13.
[9] A.V. Gelder, Efficient computation of polygon area and polyhedron volume, in: A.W. Paeth (Ed.), Graphics Gems V, Academic

Press, New York, 1995, pp. 35–41.
[10] R. Goldman, Area of planar polygons and volume of polyhedra, in: J. Arvo (Ed.), Graphics Gems II, Academic Press, New York,

1994, pp. 170–171.
[11] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, second ed.Numerical Recipes in Fortran 90, vol. 2, Cambridge

University Press, Cambridge, 1996.

	Analytic relations for reconstructing piecewise linear interfaces in triangular and tetrahedral grids
	Introduction
	Analytic PLIC on 2D triangular grids
	Analytic PLIC on 3D tetrahedral grids
	Computing the volume of fluid in an arbitrary polygonal or polyhedral fluid element
	Iterative method
	Verification
	Conclusions
	Acknowledgments
	References

